Course Syllabus

<table>
<thead>
<tr>
<th>Course Title:</th>
<th>Blueprint Reading II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date submitted:</td>
<td>4/30/2018 (18-27)</td>
</tr>
<tr>
<td>Department:</td>
<td>Advanced Manufacturing Technology</td>
</tr>
<tr>
<td>Curriculum:</td>
<td>Technology Studies</td>
</tr>
</tbody>
</table>

Course Code and Type

- **Course Code:** MFG*125
- **Course Type:** X

Prerequisites

- Blueprint Reading I (MFG*124) or equivalent assessment test

Elective Type

- **Elective Type:** G

Credit Hours

- **Credit Hours:** 3

Developmental

- **Developmental:** No

Contact Hours

- **Lecture:** 1.5
- **Clinical:** 0
- **Lab:** 1.5
- **Studio:** 0
- **Other:** 0
- **TOTAL:** 3

Class Maximum

- **Class Maximum:** 24

Semesters Offered

- **Semesters Offered:** Fall

Catalog Course Description

Second course in Blueprint Reading. A further study of simple and complex drawings for machining or assembly purposes. Topics include the application and meaning of geometric characteristics and controls the metric system, weldment, forging and casting drawings and procedures, communication with freehand sketches, blueprint terms and abbreviations.

Topical Outline

- **Instructional Units:**
 1. Applications of geometric dimensioning and tolerancing
 - A. Identify Form Tolerances for individual features
 - B. Use of Datums
 - C. Use of Location and Position Tolerances
2. Metrics and Metric Drawings
 A. SI Base Units
 B. Types of metric drawings
 C. Use of First angle projection
 D. Using Metric conversion factors
 E. Surface texture measurement system
 F. Metric screw thread notation

3. Castings, forgings and weldments
 A. Identification
 B. Methods of producing
 C. Details on engineering drawings
 D. Machined parts

4. Sketching techniques
 A. Materials used in making freehand drawings
 B. Making straight and curved lines
 C. Measuring objects
 D. Dimensioning rules
 E. Orthographic sketching
 F. Isometric sketching

5. Basic blueprint reading
 A. Putting it all together

LABORATORIES:
1. Applications of geometric dimensioning and tolerancing
 A. Use of Datums
 B. Use of Location and Position Tolerances
 C. Identify and use of Symmetry

2. Applications of Metric Drawings
 A. Use of First angle projection
 B. Using Metric conversion factors
 C. Surface texture measurement system
 D. Metric screw thread notation

3. Reading casting, forging and weldment drawings
 A. Identification and use of each type of part
 B. Methods of producing these parts
 C. Details on engineering drawings
 D. Processing of machined parts

4. Sketching techniques
 A. Using materials to make freehand drawings
 B. Making straight and curved lines to form sketches
 C. Measuring objects
 D. Applying dimensioning rules
 E. Making orthographic sketches
 F. Making isometric sketches

5. Basic blueprint reading
 A. Combining all skills to interpret drawings

<table>
<thead>
<tr>
<th>Outcomes:</th>
<th>Upon successful completion of this course, the student will be able to do the</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Describe measurable skills or knowledge that students should be able to demonstrate as evidence that they have mastered the course content.

COURSE:
1. recognize and read the application and meaning of geometric characteristics and controls
2. demonstrate the ability to understand and use the metric system
3. read and understand assembly drawings
4. recognize weldment, forging and casting drawings and procedures
5. communicate with freehand sketches
6. read simple and complex drawings for machining or assembly purposes
7. recognize and use blueprint terms and abbreviations

PROGRAM: *(Numbering reflects Program Outcomes as they appear in the college catalog)*

Electronics Technology Certificate and A.S. Degree
1. demonstrate an understanding of Shop Safety
2. demonstrate an understanding the theory of electrical structure, voltage, current, resistance, and electrical circuit and their measurement
3. demonstrate an understanding of the basic laws of arithmetic
4. demonstrate an understanding of several number systems and codes that are the foundation of digital theory and digital applications
5. make comparisons with personal computers; as well as, develop an understanding of its origin and growth since conception
6. demonstrate an understanding of the fundamentals of Automated Manufacturing systems

GENERAL EDUCATION: *(Numbering reflects General Education Outcomes as they appear in the college catalog)*

No General Education outcomes.

Evaluation:
List how the above outcomes will be assessed.

Assessment will be based on the following criteria:
- quizzes
- exams
- laboratory Projects

Instructional Resources:
List library (e.g. books, journals, online resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.

Required: No special facilities are required.

Desired: None