COURSE SYLLABUS

Course Title: Computer Numerical Control I
Department: Advanced Manufacturing Technology
Curriculum: Technology Studies
Date submitted: 4/30/2018 (18-32)

Course Code: (eg. ACC 101)
MFG*168

Course Type:
- A: Clinical
- B: Lab
- D: Distance Learning
- I: Individual/Independent
- L: Lecture
- N: Internship
- M: Seminar
- P: Practicum
- X: Combined Lecture/Lab
- Y: Combined Lecture/Studio
- Z: Combined Lecture/Studio

Elective Type:
- G

Prerequisites:
- Manufacturing Math II (MFG*105), Introduction to Machine Technology (MFG*150), and Introduction to Geometric Dimensioning & Tolerancing (MFG*160)

Corequisites:
- None

Other Requirements:
- None

Contact Hours:
- Lecture: 3
- Clinical: 0
- Lab: 0
- Studio: 0
- Other: 0
- TOTAL: 3

Credit Hours:
- 3

Developmental: (yes/no)
- No

Class Maximum:
- 24

Semesters Offered:
- Fall, Spring

Catalog Course Description:
Computer Numerical Control I is the first course in CNC machinery and programming. Topics include, Cartesian coordinates, safe use of CNC equipment, setup and operate a two axis CNC lathe and a three axis CNC machining center, programming and runoff of parts.
INSTRUCTIONAL UNITS:

1. History of CNC
2. Cartesian Coordinates
3. Safety and the safe use of the equipment
4. CNC Lathe
5. Path definition and creating Paths
6. Program and canned cycles
7. Editing and loading from the floppy drive
8. Programming the first part
9. Programming Part #2
10. Programming Part #3
11. Introduction to the CNC Vertical Machining Center
12. Introduction to G codes and auxiliary codes
13. Load the program and preview it
14. Program Part #1
15. Program Part #2
16. Program Part #3

LABORATORIES:

1. Cartesian Coordinate exercises
2. Demonstrations in Safety and the safe use of the equipment
3. Operate a CNC Lathe
4. Demonstration and exercises in Path definition and creating Paths
5. Program canned cycles and demonstrate their use
6. Editing and loading from the floppy drive
7. Programming Part #1 in MDI
8. Programming Part #2 in MDI
9. Programming Part #3 in MDI
10. Operating the CNC Vertical Machining Center
11. Demonstration of G codes and auxiliary codes
12. Load programs and preview them
13. Runoff Part #1
14. Runoff Part #2
15. Runoff Part #3

Outcomes:

Describe measurable skills or knowledge that students should be able to demonstrate as evidence that they have mastered the course content.

Upon successful completion of this course, the student will be able to do the following:

1. Demonstrate and understanding of the Cartesian coordinate system as it relates to a CNC lathe and a CNC milling machine
2. Demonstrate safe use of the CNC equipment
3. Setup and operate a two axis CNC lathe
4. Setup and operate a three axis CNC vertical machining center
5. Program simple parts for a CNC lathe using a conversational control
6. Program simple parts in G code language for a CNC vertical machining center

PROGRAM: Electronics Technology Certificate and A.S. Degree

1. Demonstrate an understanding of Shop Safety.
Computer Numerical Control I

COURSE SYLLABUS — page 3

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Demonstrate an understanding the theory of electrical structure, voltage, current, resistance, and electrical circuit and their measurement.</td>
<td></td>
</tr>
<tr>
<td>3. Demonstrate an understanding of the basic laws of arithmetic.</td>
<td></td>
</tr>
<tr>
<td>4. Demonstrate an understanding of several number systems and codes that are the foundation of digital theory and digital applications.</td>
<td></td>
</tr>
<tr>
<td>5. Make comparisons with personal computers; as well as, develop an understanding of its origin and growth since conception.</td>
<td></td>
</tr>
<tr>
<td>6. Demonstrate an understanding of the fundamentals of Automated Manufacturing systems.</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION: *(Numbering reflects General Education Outcomes as they appear in the college catalog)*

No General Education outcomes.

Evaluation:

List how the above outcomes will be assessed:

Assessment will be based on the following criteria:

1. Quizzes
2. Lab Projects

Instructional Resources:

List library (e.g. books, journals, online resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.

Required: Manufacturing lab with CNC machines and accessories.

Desired: None

Textbook(s)

None

Original: 4/10/07