COURSE SYLLABUS

<table>
<thead>
<tr>
<th>Course Title:</th>
<th>Calculus-Based Physics II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department:</td>
<td>Mathematics and Science</td>
</tr>
<tr>
<td>Curriculum:</td>
<td>Physics</td>
</tr>
</tbody>
</table>

| Date submitted: | November 2017 |

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>PHY*222</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Type:</th>
<th>X</th>
</tr>
</thead>
</table>

- **Prerequisites:**
 - C- or better in Calculus-Based Physics I (PHY*221)

<table>
<thead>
<tr>
<th>Elective Type:</th>
<th>G/LAS/S</th>
</tr>
</thead>
</table>

- **Catalog Course Description:**
 Continuation of Calculus-Based Physics I. Topics include: principles of electricity and magnetism, including electric and magnetic fields, electric currents in magnetic fields, and electromagnetic radiation, light, optics, and selected topics in modern physics. Intended for science and engineering majors. Lecture and laboratory.

Contact Hours:

- **Lecture:** 3
- **Clinical:** 0
- **Lab:** 3
- **Studio:** 0
- **Other:** 0
- **TOTAL:** 6

Other Requirements:
- Scientific calculator, technology skills

Semesters Offered:
- Sp

Course Descriptors:

- Make certain that the course descriptors are consistent with college and Board of Trustees policies, and the current course numbering system.

Course Code: (eg. ACC 101)

Course Type:

- X

Elective Type:

- G/LAS/S

Credit Hours:

- 4

Developmental:

- No

- **Lecture:** 3
- **Clinical:** 0
- **Lab:** 3
- **Studio:** 0
- **Other:** 0
- **TOTAL:** 6

Class Maximum:

- 20

Semesters Offered:

- Sp

Corequisites:

- None

Other Requirements:

Lecture:

1. **Electricity**
 - a. Electric charge and field
 - b. Gauss’s Law
 - c. Electrical potential
 - d. Capacitance, electric energy storage
 - e. Currents and resistance
 - f. DC circuits

2. **Magnetism**
 - a. Magnetism and magnetic fields
 - b. Electromagnet induction and Faraday’s Law

Original 4/10/07
Calculus-Based Physics II

COURSE SYLLABUS — page 2

<table>
<thead>
<tr>
<th>c. AC Circuits</th>
<th>d. Maxwell’s Equations</th>
</tr>
</thead>
</table>

3. **Light**
 - a. Reflection and refraction
 - b. Lenses and optical instruments
 - c. Light waves, interference, diffraction and polarization

4. **Modern Physics**
 - a. Relativity, time dilation, length contraction, four-dimensional space-time, relation of mass and energy
 - b. Quantum theory and atomic models, including work by Planck, Bohr, Schrödinger and de Broglie

Laboratory:

1. Measurement of Resistance
2. Ohm’s Law: Resistances in Series and Parallel
3. DC Currents
4. RC Time Constant
5. Introduction to the Oscilloscope
6. Multiloop Circuits: Kirchhoff’s Rules
7. Electromagnetic Induction
8. Reflection and Refraction
9. Mirrors and Lenses
10. Polarized Light
11. Prism Spectrophotometer
12. Line Spectra Rydberg Constant
13. Detection of Nuclear Radiation: Geiger Counter
14. Radioactive Half-Life
15. Absorption of Nuclear Radiation

Outcomes:

Describe measurable skills or knowledge that students should be able to demonstrate as evidence that they have mastered the course content.

Upon course completion, the student will be able to:

COURSE:

1. solve elementary problems dealing with Coulomb’s Law for electrostatic charges and for magnetic properties of materials
2. calculate electric field distributions via Gauss’ Law and magnetic field distributions via Ampere’s Law
3. given information on the current, voltage, and resistance of electrical circuits, compute the circuital parameters of elements in a DC circuit, and to carry out controlled experiments verifying the results of the calculations
4. discuss the properties of electromagnetic radiation with regard to type, wavelength, and velocity of propagation
5. explain, with examples, the relationship between the properties of waves, such as, wavelength, frequency and velocity of propagation
6. solve elementary problems and perform controlled experiments involving diffraction and interference of light
7. apply the properties of reflection and refraction of light to the analysis of optical systems involving lenses and mirror
8. distinguish between the major periods of the development of physics referred to as the periods of Classical Physics, Modern Physics, and Contemporary Physics
9. describe the general tenets of Einstein’s special theory of relativity, time dilation and the relationship between energy and mass
10. explain the Bohr-Rutherford model of the atom as it applied to the atomic spectra emitted by the hydrogen atom and subsequent quantum models developed by Schrödinger

PROGRAM: (Numbering reflects Program Outcomes as they appear in the college catalog)

Original-4/10/07
<table>
<thead>
<tr>
<th>N/A</th>
</tr>
</thead>
</table>

COMPETENCY FULFILLED:
Scientific Knowledge & Understanding (SCKX) OR Scientific Reasoning (SCRX)

Evaluation:
List how the above outcomes will be assessed.

Assessment will be based on some or all of the following criteria:
- Quizzes
- Examinations – definitions, concepts, and quantitative problem solving
- Laboratory reports.
- Laboratory experiments - observation of work
- Laboratory reports

Instructional Resources:
List library (e.g. books, journals, on-line resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.

- **Required:** Scientific calculator, physics laboratory
- **Desired:** Physics software

Textbook(s)
Giancoli, *Physics for Scientists & Engineers*, 4th ed.; Pearson Education