Course Syllabus

Course Title: Circuit Theory I
Department: Advanced Manufacturing Technology
Curriculum: Technology Studies
Course Code: MFG*137
Course Type: B

Course Descriptors:

- **Elective Type:** G
- **Prerequisites:** None
- **Corequisites:** None
- **Developmental:** No
- **Class Maximum:** 24
- **Semesters Offered:** Fall

Catalog Course Description:

Circuit Theory I is an introduction to direct current (DC) circuits. Circuit Theory I will introduce the student to electrical/electronic components; the nature of electricity (voltage, current, and resistance); Ohm's Law of measurement; the concept of energy and power; types of circuits (series, parallel, and series-parallel); Thevenin's and Norton's Theorems of circuit simplification, and magnetism and electro magnetism.

Topical Outline:

1. Components, Quantities, and Units
2. Voltage, Current, and Resistance
3. Ohm's Law
4. Energy and Power
5. Series Circuits
6. Parallel Circuits
Upon successful completion of this course, the student will be able to do the following:

COURSE:

1. demonstrate an understanding of electrical components, electrical and magnetic quantities and their units, scientific and engineering notations, and metric conversion
2. demonstrate an understanding the theory of electrical structure, voltage, current, resistance, and electrical circuit and their measurement
3. demonstrate an understanding of Ohm’s Law and apply Ohm’s Law to the measurement of current, voltage, and resistance in a circuit
4. demonstrate an understanding of the concepts of energy and power, power in circuits, resistance, and power supply
5. demonstrate an understanding of the concept of a series circuit and of its physical construction, and demonstrate an understanding of the application of Ohm’s law and Kirchhoff’s voltage law to a series circuit
6. demonstrate an understanding of a concept of a parallel circuit and of its physical construction, and demonstrate an understanding of the application Ohm’s and Kirchhoff law to a parallel circuit
7. demonstrate an understanding of the concept of a series-parallel circuit and of its physical construction, and demonstrate an understanding of the application of Ohm’s and Kirchhoff’s laws to a series-parallel circuit
8. demonstrate an understanding of superposition theorem to circuit analysis and an understanding of Thevenin’s and Norton’s theorems of circuit simplification
9. demonstrate an understanding of simultaneous equations in branch current measurements, an understanding of the application Kirchhoff voltage in current laws as they apply to branch, mesh, and node analysis
10. demonstrate an understanding of the principles of magnetism and of electromagnetism

PROGRAM: *(Numbering reflects Program Outcomes as they appear in the college catalog)*

Electronics Technology Certificate and A.S. Degree

1. demonstrate an understanding of Shop Safety
2. demonstrate an understanding the theory of electrical structure, voltage, current, resistance, and electrical circuit and their measurement
3. demonstrate an understanding of the basic laws of arithmetic
4. demonstrate an understanding of several number systems and codes that are the foundation of digital theory and digital applications
5. make comparisons with personal computers; as well as, develop an understanding
<table>
<thead>
<tr>
<th>6. demonstrate an understanding of the fundamentals of Automated Manufacturing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL EDUCATION: (Numbering reflects General Education Outcomes as they appear in the college catalog)</td>
</tr>
<tr>
<td>No General Education outcomes.</td>
</tr>
<tr>
<td>Evaluation:</td>
</tr>
<tr>
<td>List how the above outcomes will be assessed.</td>
</tr>
<tr>
<td>Assessment will be based on the following criteria:</td>
</tr>
<tr>
<td>tests and quizzes</td>
</tr>
<tr>
<td>Instructional Resources:</td>
</tr>
<tr>
<td>List library (e.g. books, journals, online resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.</td>
</tr>
<tr>
<td>Required: None</td>
</tr>
<tr>
<td>Desired: None</td>
</tr>
<tr>
<td>Textbook(s)</td>
</tr>
</tbody>
</table>