COURSE SYLLABUS

<table>
<thead>
<tr>
<th>Course Title:</th>
<th>Energy Co-Op Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department:</td>
<td>Business & Technology</td>
</tr>
<tr>
<td>Curriculum:</td>
<td>Energy Management Program</td>
</tr>
<tr>
<td>Course Code:</td>
<td>NRG*290</td>
</tr>
<tr>
<td>Course Type:</td>
<td>N</td>
</tr>
<tr>
<td>Elective Type:</td>
<td>G</td>
</tr>
<tr>
<td>Credit Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Developmental:</td>
<td>No</td>
</tr>
<tr>
<td>Lecture:</td>
<td>0</td>
</tr>
<tr>
<td>Clinical:</td>
<td>0</td>
</tr>
<tr>
<td>Lab:</td>
<td>0</td>
</tr>
<tr>
<td>Other:</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>3</td>
</tr>
<tr>
<td>Class Maximum:</td>
<td>24</td>
</tr>
<tr>
<td>Semesters Offered:</td>
<td>Sp</td>
</tr>
</tbody>
</table>

Prerequisites:
C- or better in Commercial HVAC Systems & Analysis (NRG*122), Energy Efficiency Methods (NRG*123), Energy Control Strategies (NRG*124), Building Efficiency Auditing (NRG*131), Lighting Fundamentals & Applications (NRG*133); Energy Investment Analysis (NRG*240), or approval of Program Coordinator.

Corequisites:
Commercial Energy Use Analysis & Simulations (NRG*241).

Other Requirements:
NOTE: It is highly recommended that students register for Energy Accounting (NRG*242) concurrently with NRG*290 to complement their Internship.

Course Descriptors:
Make certain that the course descriptors are consistent with college and Board of Trustees policies, and the current course numbering system.

Catalog Course Description:
Provides AAS Degree students with a “capstone” course learning experience that integrates theory & practice in energy management. Students will execute an energy career-related internship with one of our Employer Partners to further develop their work skills, explore career options & network within their chosen industry. Students will...
work directly for utility companies, energy management firms and energy service companies to apply skills and knowledge gained in the program to a real world work experience.

Topical Outline:

List course content in outline format.

1. **Introduction to Internship:**
 a. Energy Careers
 b. Emotional Intelligence
 c. Effective negotiations
 d. Dealing with difficult people
 e. Stress management
 f. Time management
 g. Professionalism in the workplace
 h. Conflict resolution
 i. Workplace cultures and how to handle them

2. **Implementing the Internship:**
 a. Resume Preparation
 b. Introductions to Supervisor(s)
 c. Written Agreement
 d. Coaching by Advisor

3. **Final Report**
 a. Overview
 b. Outline Report Components/Initial Draft
 c. Revisions
 d. 2nd Draft
 e. Proofing
 f. Final Draft

Upon successful completion of this course, the student will be able to do the following:

1. demonstrate a thorough understanding of the project(s) as assigned, using information learned in prior Energy Management program coursework
2. write a 5-page report outlining the project(s), purpose, steps taken, challenges faced, and results of the student’s work
3. describe in detail the work performed, including samples of reports, spreadsheets, correspondence, charts, graphs, or other material work product provided by the student to the employer
4. use best practices learned in the Energy Management Program to implement the internship work
5. apply methods, formulas, unit conversions, etc. learned in the program to internship work
6. identify the projects performed in the internship in the final report

PROGRAM: *(Numbering reflects Program Outcomes as they appear in the college catalog)*

1. evaluate energy use patterns of residential and commercial buildings
2. recommend energy efficiency and renewable energy solutions for high energy consuming buildings
3. demonstrate an understanding of the interaction between energy consuming building systems and based on that understanding make energy consumption recommendations
4. produce energy evaluation technical reports and make presentations leading to project implementation
5. develop and evaluate inferences and predictions that are based on collected data
6. read and analyze building blue prints including floor, mechanical, and electrical plans
7. use problem-solving techniques & mathematics to transform concepts into energy related projects
GENERAL EDUCATION:
(Numbering reflects General Education Outcomes as they appear in the college catalog)

Students’ internship will be evaluated based on one of the following General Education Abilities, based on the nature of their internship work.

| N/A |

Evaluation:
List how the above outcomes will be assessed.

| 4. Assessments will be made based on student’s attendance, supervisor’s periodic and final reports, student resume, drafts and final report, and overall performance. |

Instructional Resources:
List library (e.g. books, journals, online resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.

| Required: No special facilities are required. |

| Desired: None |

Textbook(s)
None