COURSE SYLLABUS

<table>
<thead>
<tr>
<th>Course Title:</th>
<th>Environmental Systems</th>
<th>Date submitted:</th>
<th>Fall 2015 (AAC: 15-69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department:</td>
<td>Business & Technology Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum:</td>
<td>Energy Management Program</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Code: **ARC240**

Course Type:
- **X/D**
 - **A**: Clinical
 - **B**: Lab
 - **D**: Distance Learning
 - **I**: Individual/Independent
 - **L**: Lecture
 - **M**: Seminar
 - **P**: Practicum
 - **U**: Studio
 - **X**: Combined Lecture/Lab
 - **Y**: Combined Lecture/Lab
 - **Z**: Combined Lecture/Studio

Elective Type: **G**

Prerequisites:
- Placement into Composition (ENG*101) AND placement into Introductory Algebra (MAT*094)

Corequisites:
- None

Other Requirements:
- None

Credit Hours: **3**

Developmental:
- **(yes/no)**: No
- **Lecture**: 2
- **Clinical**: 0
- **Lab**: 2
- **Studio**: 0
- **Other**: 0
- **TOTAL**: 4

Class Maximum: **24**

Semesters Offered: **Sp**

Catalog Course Description:
Imparts knowledge of the interior environment of structures large and small. The interrelationship of energy, climate, site, and architectural design are studied. Conservation of nonrenewable energy sources is an intrinsic theme. A study of the design factors in heating, cooling, plumbing, fire protection and electrical systems is included.

Topical Outline:

PART I – DESIGN CONTEXT
- Chapter 1: Design Process
- Chapter 2: Environmental Resources
- Chapter 3: Sites and Resources
- Chapter 4: Comfort and Design Strategies
- Chapter 5: Indoor Air Quality

PART II – THERMAL CONTROL
- Chapter 6: Solar Geometry and Shading Devices
- Chapter 7: Heat Flow
- Chapter 8: Designing for Heating and Cooling
- Chapter 9: HVAC for Smaller Buildings
Chapter 10: Larger Building HVAC Systems

PART III – ILLUMINATION
- Chapter 11: Lighting Fundamentals
- Chapter 12: Light Sources
- Chapter 13: Lighting Design Process
- Chapter 14: Daylighting Design
- Chapter 15: Electric Lighting Design
- Chapter 16: Electric Lighting Applications

PART IV – ACOUSTICS
- Chapter 17: Fundamentals of Architectural Acoustics
- Chapter 18: Sound in Enclosed Spaces
- Chapter 19: Building Noise Control

PART V – WATER AND WASTE
- Chapter 20: Water Resources
- Chapter 21: Water Supply
- Chapter 22: Liquid Waste
- Chapter 23: Solid Waste

PART VI – FIRE PROTECTION
- Chapter 24: Fire Protection

PART VII – ELECTRICITY
- Chapter 25: Principles of Electricity
- Chapter 26: Electrical Systems and Materials: Service and Utilization
- Chapter 27: Electrical Systems and Materials: Wiring and Raceways
- Chapter 28: Electric Wiring Design
- Chapter 29: Photovoltaic Systems

PART VIII – SIGNAL EQUIPMENT
- Chapter 30: Signal Systems

PART IX – TRANSPORTATION
- Chapter 31: Vertical Transportation: Passenger Elevators
- Chapter 32: Vertical Transportation: Special Topics
- Chapter 33: Moving Stairways and Walks

Outcomes:

Describe measurable skills or knowledge that students should be able to demonstrate as evidence that they have mastered the course content.

Upon successful completion of this course, the student will be able to do the following:

- appraise the interior environment of structures large and small and the interrelationship of energy, climate, site and architectural design
- examine sustainable design concepts and non-renewable energy sources
- evaluate the design factors for heating, cooling, plumbing, vertical transportation and fire protection

PROGRAM:

(Numbering reflects Program Outcomes as they appear in the college catalog)

1. evaluate energy use patterns of residential and commercial buildings
2. recommend energy efficiency and renewable energy solutions for high energy consuming buildings
3. demonstrate an understanding of the interaction between energy consuming building systems and based on that understanding make energy consumption recommendations
4. produce energy evaluation technical reports and make presentations leading to project implementation
5. develop and evaluate inferences and predictions that are based on collected data
6. read and analyze building blue prints including floor, mechanical, and electrical
7. use problem-solving techniques & mathematics to transform concepts into energy related projects

<table>
<thead>
<tr>
<th>GENERAL EDUCATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Numbering reflects General Education Outcomes as they appear in the college catalog)</td>
</tr>
<tr>
<td>2. Critical Analysis/ Logical Thinking - Students will be able to organize, interpret, and evaluate evidence and ideas within and across disciplines; draw reasoned inferences and defensible conclusions; and solve problems and make decisions based on analytical processes.</td>
</tr>
<tr>
<td>Demonstrates: Identifies the issue(s); formulates an argument; explains and analyzes relationships clearly; draws reasonable inferences and conclusions that are logical and defensible; provides support by evaluating credible sources of evidence necessary to justify conclusions.</td>
</tr>
<tr>
<td>Does Not Demonstrate: Identifies few or no issues; formulates an argument without significant focus; provides an unclear explanation of analysis and relationships; drawing few reasonable inferences and conclusions that are illogical and indefensible; provides little to no support using credible sources of evidence necessary to justify conclusions.</td>
</tr>
</tbody>
</table>

Evaluation:

List how the above outcomes will be assessed.

Assessment will be based on the following criteria:

- Tests
- Assignments (3)
- Final Exam 3
- Class participation:
 - Class discussions
 - Case studies presentations

Instructional Resources:

List library (e.g. books, journals, online resources), technological (e.g. Smartboard, software), and other resources (e.g. equipment, supplies, facilities) required and desired to teach this course.

| Required: None |
| Desired: None |

Textbook(s)

| Required Text: Stein, Reynolds, Grondzik, Kwok: Mechanical and Electrical Equipment for Buildings, 11th Edition |